
Numerary
Release latest

Sep 20, 2020

Root finding

1 Contents 3
1.1 Bisection Method . 3
1.2 Secant Method . 5
1.3 Integral Approximation - Simpson’s Rule . 7
1.4 Bisection Method . 9
1.5 Golden Ratio Method . 9
1.6 Bisection Method . 10
1.7 Golden Ratio Method . 11
1.8 Gauss Elimination Method . 12
1.9 Newton’s Method . 14
1.10 Dormand-Prince Method . 17
1.11 Linear Regression . 19
1.12 Lagrange’s Interpolation . 22
1.13 Numerical differentiation. Calculation of the first derivative. 25
1.14 Incomplete Gamma Function . 26

i

ii

Numerary, Release latest

Numerary is Scientific Library that contains many numerical methods.

Root finding 1

Numerary, Release latest

2 Root finding

CHAPTER 1

Contents

1.1 Bisection Method

1.1.1 Overview

In mathematics, the bisection method is a root-finding method that applies to any continuous functions for which
one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these
values and then selecting the subinterval in which the function changes sign, and therefore must contain a root. It
is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough
approximation to a solution which is then used as a starting point for more rapidly converging methods. The method
is also called the interval halving method, the binary search method, or the dichotomy method.

3

Numerary, Release latest

1.1.2 The Method

The method is applicable for numerically solving the equation 𝑓(𝑥) = 0 for the real variable 𝑥, where 𝑓 is a continuous
function defined on an interval [𝑎, 𝑏] and where 𝑓(𝑎) and 𝑓(𝑏) have opposite signs. In this case 𝑎 and 𝑏 are said to
bracket a root since, by the intermediate value theorem, the continuous function 𝑓 must have at least one root in the
interval (𝑎, 𝑏).

At each step the method divides the interval in two by computing the midpoint 𝑐 = 𝑎+𝑏
2 of the interval and the value

of the function 𝑓(𝑐) at that point. Unless 𝑐 is itself a root (which is very unlikely, but possible) there are now only two
possibilities: either 𝑓(𝑎) and 𝑓(𝑐) have opposite signs and bracket a root, or 𝑓(𝑐) and 𝑓(𝑏) have opposite signs and
bracket a root. The method selects the subinterval that is guaranteed to be a bracket as the new interval to be used in
the next step. In this way an interval that contains a zero of 𝑓 is reduced in width by 50% at each step. The process is
continued until the interval is sufficiently small.

Explicitly, if 𝑓(𝑎) and 𝑓(𝑐) have opposite signs, then the method sets 𝑐 as the new value for 𝑏, and if 𝑓(𝑏) and 𝑓(𝑐)
have opposite signs then the method sets 𝑐 as the new 𝑎. (If 𝑓(𝑐) = 0 then 𝑐 may be taken as the solution and the
process stops.) In both cases, the new 𝑓(𝑎) and 𝑓(𝑏) have opposite signs, so the method is applicable to this smaller
interval.

Iteration Tasks

1. Calculate 𝑐, the midpoint of the interval, 𝑐 = 𝑎+𝑏
2 .

2. Calculate the function value at the midpoint, 𝑓(𝑐).

3. If convergence is satisfactory (that is, 𝑐−𝑎 is sufficiently small, or |𝑓(𝑐)| is sufficiently small), return 𝑐 and stop
iterating.

4 Chapter 1. Contents

Numerary, Release latest

4. Examine the sign of 𝑓(𝑐) and replace either (𝑎, 𝑓(𝑎)) or (𝑏, 𝑓(𝑏)) with (𝑐, 𝑓(𝑐)) so that there is a zero crossing
within the new interval.

1.1.3 Usage

Imagine that we want to find the root of the following function:

𝑓(𝑥) = sin (𝑥), 𝑥 ∈ [−1, 1] (1.1)

Then the code will look like this:

// example_root_bisection.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Function to found the root */
double f(double x) {

return sin(x);
}

/* The main function */
int main() {

const double eps = 1.e-9; // eps value for method (1.e-9 by default)
double a = -1; // "a" value of segment [a, b]
double b = 1; // "b" value of segment [a, b]
double root;
short int is_found;

is_found = Numerary::root(f, a, b, &root, "bisection", eps);

if (is_found == 1) {
cout << "Root is in x = " << root << endl;

} else {
cout << "Method not allowed!" << endl;

}

return 0;
}

1.2 Secant Method

1.2.1 Overview

In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to
better approximate a root of a function 𝑓 . The secant method can be thought of as a finite-difference approximation
of Newton’s method. However, the method was developed independently of Newton’s method and predates it by over
3000 years.

1.2. Secant Method 5

Numerary, Release latest

1.2.2 The Method

The secant method is defined by the recurrence relation

𝑥𝑛 = 𝑥𝑛−1 − 𝑓 (𝑥𝑛−1)
𝑥𝑛−1 − 𝑥𝑛−2

𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)
=

𝑥𝑛−2𝑓 (𝑥𝑛−1) − 𝑥𝑛−1𝑓 (𝑥𝑛−2)

𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)
. (1.2)

As can be seen from the recurrence relation, the secant method requires two initial values, 𝑥0 and 𝑥1, which should
ideally be chosen to lie close to the root.

1.2.3 Derivation Of The Method

Starting with initial values 𝑥0 and 𝑥1, we construct a line through the points (𝑥0, 𝑓(𝑥0)) and (𝑥1, 𝑓(𝑥1)), as shown in
the picture above. In slope–intercept form, the equation of this line is

𝑦 =
𝑓 (𝑥1) − 𝑓 (𝑥0)

𝑥1 − 𝑥0
(𝑥− 𝑥1) + 𝑓 (𝑥1) . (1.3)

The root of this linear function, that is the value of 𝑥 such that 𝑦 = 0 is

𝑥 = 𝑥1 − 𝑓 (𝑥1)
𝑥1 − 𝑥0

𝑓 (𝑥1) − 𝑓 (𝑥0)
. (1.4)

We then use this new value of 𝑥 as 𝑥2 and repeat the process, using 𝑥1 and 𝑥2 instead of 𝑥0 and 𝑥1. We continue this
process, solving for 𝑥3, 𝑥4, etc., until we reach a sufficiently high level of precision (a sufficiently small difference
between 𝑥𝑛 and 𝑥𝑛 − 1):

𝑥2 = 𝑥1 − 𝑓 (𝑥1)
𝑥1 − 𝑥0

𝑓 (𝑥1) − 𝑓 (𝑥0)

𝑥3 = 𝑥2 − 𝑓 (𝑥2)
𝑥2 − 𝑥1

𝑓 (𝑥2) − 𝑓 (𝑥1)

...

𝑥𝑛 = 𝑥𝑛−1 − 𝑓 (𝑥𝑛−1)
𝑥𝑛−1 − 𝑥𝑛−2

𝑓 (𝑥𝑛−1) − 𝑓 (𝑥𝑛−2)
.

(1.5)

6 Chapter 1. Contents

Numerary, Release latest

1.2.4 Usage

Imagine that we want to minimize the following function:

𝑓(𝑥) = sin𝑥, 𝑥 ∈ [−1, 1] (1.6)

Then the code will look like this:

// example_root_secant.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Function to found the root */
double f(double x) {

return sin(x);
}

/* The main function */
int main() {

const double eps = 1.e-9; // eps value for method (1.e-9 by default)
double a = -1; // "a" value of segment [a, b]
double b = 1; // "b" value of segment [a, b]
double root;
short int is_found;

is_found = Numerary::root(f, a, b, &root, "secant", eps);

if (is_found == 1) {
cout << "Root is in x = " << root << endl;

} else {
cout << "Method not allowed!" << endl;

}

return 0;
}

1.3 Integral Approximation - Simpson’s Rule

1.3.1 Definition

Suppose 𝑓(𝑥) is defined on the interval [𝑎, 𝑏]. Then Simpson’s rule on the entire interval approximates the definite
integral of 𝑓(𝑥) on the interval by the formula∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ 𝑏− 𝑎

6

(︂
𝑓(𝑎) + 4𝑓

(︂
𝑎 + 𝑏

2

)︂
+ 𝑓(𝑏)

)︂
(1.7)

The idea is that if 𝑓(𝑥) = 1, 𝑥, 𝑥2, this formula is an exact equality. So Simpson’s rule gives the correct integral of
any quadratic function. In general, Simpson’s rule approximates 𝑓(𝑥) by a parabola through the points on the graph
of 𝑓(𝑥) with 𝑥-coordinates 𝑎, 𝑎+𝑏

2 , 𝑏.

1.3. Integral Approximation - Simpson’s Rule 7

Numerary, Release latest

Simpson’s rule is usually applied by breaking the interval into 𝑁 equal-sized subintervals, where 𝑁 is an even number,
and approximating the integral over each pair of adjacent subintervals using the above estimate.

That is, let 𝑥0 = 𝑎, 𝑥1 = 𝑎 + 𝑏−𝑎
𝑁 , 𝑥2 = 𝑎 + 2 𝑏−𝑥

𝑁 , . . . , 𝑥𝑁−1 = 𝑎 + (𝑁 − 1) 𝑏−𝑎
𝑁 , 𝑥𝑁 = 𝑏. Then∫︁ 𝑥2

𝑎

𝑓(𝑥)𝑑𝑥 ≈ 𝑏− 𝑎

3𝑁
(𝑓(𝑎) + 4𝑓 (𝑥1) + 𝑓 (𝑥2)) (1.8)

∫︁ 𝑥4

𝑥2

𝑓(𝑥)𝑑𝑥 ≈ 𝑏− 𝑎

3𝑁
(𝑓(𝑥2) + 4𝑓 (𝑥3) + 𝑓 (𝑥4)) (1.9)

and so on. Adding these up gives∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ 𝑏− 𝑎

3𝑁
(𝑓(𝑎) + 4𝑓 (𝑥1) + 2𝑓 (𝑥2) + 4𝑓 (𝑥3) + 2𝑓 (𝑥4) + · · · + 4𝑓 (𝑥𝑁−1) + 𝑓(𝑏)) . (1.10)

1.3.2 Usage

Imagine that we want to integrate the following expression:∫︁ 1

0

(5𝑥3 + 2 cos𝑥)𝑑𝑥. (1.11)

Then the code will look like this:

// example_integral_simpson.cpp

#include <iostream>
#include "../src/numerary.hpp"

using namespace std;
using namespace numerary;

/* Function to be integrated */
double f(double x) {

return 5*pow(x, 3) + 2*cos(x);
}

/* The main function */
int main() {

const double from = 0; // Lower bound of integral
const double to = 1; // Upper bound of integral
const string method = "simpson"; // Numerical method we will use for integration (

→˓"simpson" by default)
const double eps = 1.e-9; // eps value for integration (1.e-9 by default)

double *I = Numerary::integrate(f, from, to, method, eps);

cout << "ans = " << I[0] << endl; // Value of calculated integral
cout << "err = " << I[1] << endl; // Error of calculated integral value

return 0;
}

8 Chapter 1. Contents

Numerary, Release latest

1.4 Bisection Method

1.4.1 Usage

Imagine that we want to minimize the following function:

𝑓(𝑥) = 2𝑥2 − 5𝑥 + 3, 𝑥 ∈ [0, 2] (1.12)

Then the code will look like this:

// example_minimum_bisection.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Function to found local minimum */
double f(double x) {

return 2*x*x - 5*x + 3;
}

/* The main function */
int main() {

const double eps = 1.e-9; // eps value for method (1.e-9 by default)
double a = 0; // "a" value of segment [a, b]
double b = 2; // "b" value of segment [a, b]
double minimum;
short int is_found;

is_found = Numerary::minimum(f, a, b, &minimum, "bisection", eps);

if (is_found == 1) {
cout << "Minimum is in x = " << minimum << endl;

} else {
cout << "Method not allowed!" << endl;

}

return 0;
}

1.5 Golden Ratio Method

1.5.1 Usage

Imagine that we want to minimize the following function:

𝑓(𝑥) = 𝑥2 + sin (3𝑥), 𝑥 ∈ [−1, 1] (1.13)

Then the code will look like this:

1.4. Bisection Method 9

Numerary, Release latest

// example_minimum_golden_ratio.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Function to found local minimum */
double f(double x) {

return x*x + sin(3*x);
}

/* The main function */
int main() {

const double eps = 1.e-9; // eps value for method (1.e-9 by default)
double a = -1; // "a" value of segment [a, b]
double b = 1; // "b" value of segment [a, b]
double minimum;
short int is_found;

is_found = Numerary::minimum(f, a, b, &minimum, "golden_ratio", eps);

if (is_found == 1) {
cout << "Minimum is in x = " << minimum << endl;

} else {
cout << "Method not allowed!" << endl;

}

return 0;
}

1.6 Bisection Method

1.6.1 Usage

Imagine that we want to maximize the following function:

𝑓(𝑥) = sin𝑥, 𝑥 ∈ [−2, 2] (1.14)

Then the code will look like this:

// example_maximum_bisection.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Function to found local maximum */
double f(double x) {

return sin(x);
}

(continues on next page)

10 Chapter 1. Contents

Numerary, Release latest

(continued from previous page)

/* The main function */
int main() {

const double eps = 1.e-9; // eps value for method (1.e-9 by default)
double a = -2; // "a" value of segment [a, b]
double b = 2; // "b" value of segment [a, b]
double maximum;
short int is_found;

is_found = Numerary::maximum(f, a, b, &maximum, "bisection", eps);

if (is_found == 1) {
cout << "Maximum is in x = " << maximum << endl;

} else {
cout << "Method not allowed!" << endl;

}

return 0;
}

1.7 Golden Ratio Method

1.7.1 Usage

Imagine that we want to maximize the following function:

𝑓(𝑥) =
1

1 + 𝑥2
, 𝑥 ∈ [−2, 2] (1.15)

Then the code will look like this:

// example_maximum_golden_ratio.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Function to found local maximum */
double f(double x) {

return 1.0 / (1.0 + x*x);
}

/* The main function */
int main() {

const double eps = 1.e-9; // eps value for method (1.e-9 by default)
double a = -2; // "a" value of segment [a, b]
double b = 2; // "b" value of segment [a, b]
double maximum;
short int is_found;

(continues on next page)

1.7. Golden Ratio Method 11

Numerary, Release latest

(continued from previous page)

is_found = Numerary::maximum(f, a, b, &maximum, "golden_ratio", eps);

if (is_found == 1) {
cout << "Maximum is in x = " << maximum << endl;

} else {
cout << "Method not allowed!" << endl;

}

return 0;
}

1.8 Gauss Elimination Method

1.8.1 Algorithm

The Gauss method is a classical method for solving a system of linear algebraic equations (SLAE). Consider a system
of linear equations with real constant coefficients⎧⎪⎪⎨⎪⎪⎩

𝑎11 · 𝑥1 + 𝑎12 · 𝑥2+ · · · +𝑎1𝑛 · 𝑥𝑛 = 𝑦1
𝑎21 · 𝑥1 + 𝑎22 · 𝑥2+ · · · +𝑎2𝑛 · 𝑥𝑛 = 𝑦2

· · ·
𝑎𝑛1 · 𝑥1 + 𝑎𝑛2 · 𝑥2+ · · · +𝑎𝑛𝑛 · 𝑥𝑛 = 𝑦𝑛

or in matrix form

𝐴𝑥 = 𝑦,

where

𝐴 =

⎛⎝ 𝑎11 . . . 𝑎1𝑛
. . .

𝑎𝑛1 . . . 𝑎𝑛𝑛

⎞⎠ , 𝑥 =

⎛⎜⎝ 𝑥1

...
𝑥𝑛

⎞⎟⎠ , 𝑦 =

⎛⎜⎝ 𝑦1
...
𝑦𝑚

⎞⎟⎠ .

The Gauss method of solving a system of linear equations includes 2 stages:

• sequential (direct) exception;

• reverse substitution.

Sequential exception

Gauss exceptions are based on the idea of successive exceptions variables one at a time until only one equation remains
with one variable on the left side. Then this equation is solved with respect to a single variable. Thus, the system of
equations lead to a triangular (step) shape. For this, among the elements the first column of the matrix is selected
nonzero (and most often maximum) element and move it to its highest position by rearranging lines. Then all the
equations are normalized, dividing it by the coefficient ai1, where i is the column number.⎧⎪⎪⎨⎪⎪⎩

𝑥1 + 𝑎12

𝑎11
· 𝑥2+ · · · +𝑎1𝑛

𝑎11
· 𝑥𝑛 = 𝑦1

𝑎11

𝑥1 + 𝑎22

𝑎21
· 𝑥2+ · · · +𝑎2𝑛

𝑎21
· 𝑥𝑛 = 𝑦2

𝑎21

· · ·
𝑥1 + 𝑎𝑛2

𝑎𝑛1
· 𝑥2+ · · · +𝑎𝑛𝑛

𝑎𝑛1
· 𝑥𝑛 = 𝑦𝑛

𝑎𝑛1

12 Chapter 1. Contents

Numerary, Release latest

Then the first line obtained after the permutation is subtracted from the remaining lines:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥1 + 𝑎12

𝑎11
· 𝑥2 + · · ·+ 𝑎1𝑛

𝑎11
· 𝑥𝑛 = 𝑦1

𝑎11

0 +
(︁

𝑎22

𝑎21
− 𝑎12

𝑎11

)︁
· 𝑥2 + · · ·+

(︁
𝑎2𝑛

𝑎21
− 𝑎1𝑛

𝑎11

)︁
· 𝑥𝑛 =

(︁
𝑦2

𝑎21
− 𝑦1

𝑎11

)︁
· · ·

0 +
(︁

𝑎𝑛2

𝑎𝑛1
− 𝑎12

𝑎11

)︁
· 𝑥2 + · · ·+

(︁
𝑎𝑛𝑛

𝑎𝑛1
− 𝑎1𝑛

𝑎11

)︁
· 𝑥𝑛 =

(︁
𝑦𝑛

𝑎𝑛1
− 𝑦1

𝑎11

)︁
A new system of equations is obtained, in which the corresponding coefficients are replaced.⎧⎪⎪⎨⎪⎪⎩

𝑥1 + 𝑎′12 · 𝑥2 + · · ·+ 𝑎′1𝑛 · 𝑥𝑛 = 𝑦′1
0 + 𝑎′22 · 𝑥2 + · · ·+ 𝑎′2𝑛 · 𝑥𝑛 = 𝑦′2

· · ·
0 + 𝑎′𝑛2 · 𝑥2 + · · ·+ 𝑎′𝑛𝑛 · 𝑥𝑛 = 𝑦′𝑛

After the indicated transformations have been completed, the first row and the first column are mentally deleted and
continue the specified process for all subsequent equations until an equation with one unknown:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥1 + 𝑎′12 · 𝑥2 + 𝑎′13 · 𝑥3 + · · ·+ 𝑎′1𝑛 · 𝑥𝑛 = 𝑦′1
0 + 𝑥2 + 𝑎′′23 · 𝑥3 + · · ·+ 𝑎′′2𝑛 · 𝑥𝑛 = 𝑦′′2
0 + 0 + 𝑥3 + · · ·+ 𝑎′′′3𝑛 · 𝑥𝑛 = 𝑦′′′3

· · ·
0 + 0 + 0 + · · ·+ 𝑥𝑛 = 𝑦𝑛′𝑛

Reverse substitution

Reverse substitution involves the substitution of the value of x_n obtained in the previous step into the previous
equations:

𝑥𝑛−1 = 𝑦
(𝑛−1)′

𝑛−1 − 𝑎
(𝑛−1)′
(𝑛−1)𝑛 · 𝑥𝑛

𝑥𝑛−2 + 𝑎
(𝑛−2)′
(𝑛−2)(𝑛−1) · 𝑥𝑛−1 = 𝑦

(𝑛−2)′

𝑛−2 − 𝑎
(𝑛−2)′
(𝑛−2)𝑛 · 𝑥𝑛

· · ·
𝑥2 + 𝑎′′23 · 𝑥3 + · · · + 𝑎′′2(𝑛−1) · 𝑥𝑛−1 = 𝑦′′2 − 𝑎′′2𝑛 · 𝑥𝑛

𝑥1 + 𝑎′12 · 𝑥2 + 𝑎′13 · 𝑥3 + · · · + 𝑎′1(𝑛−1) · 𝑥𝑛−1 = 𝑦′1 − 𝑎′1𝑛 · 𝑥𝑛

This procedure is repeated for all remaining solutions:

𝑥𝑛−2 =
(︁
𝑦
(𝑛−2)′

𝑛−2 − 𝑎
(𝑛−2)′

(𝑛−2)𝑛 · 𝑥𝑛

)︁
− 𝑎

(𝑛−2)′
(𝑛−2)(𝑛−1) · 𝑥𝑛−1

· · ·
𝑥2 + 𝑎′′23 · 𝑥3 + · · · = (𝑦′′2 − 𝑎′′2𝑛 · 𝑥𝑛) − 𝑎′′2(𝑛−1) · 𝑥𝑛−1

𝑥1 + 𝑎′12 · 𝑥2 + 𝑎′13 · 𝑥3 + · · · = (𝑦′1 − 𝑎′1𝑛 · 𝑥𝑛) − 𝑎′1(𝑛−1) · 𝑥𝑛−1

1.8.2 Usage

Imagine that we want to solve following linear system of equations:(︂
2 1
−1 1

)︂(︂
𝑥1

𝑥2

)︂
=

(︂
5
2

)︂
.

Then the code will look like this:

1.8. Gauss Elimination Method 13

Numerary, Release latest

// example_gauss_elimination.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* The main function */
int main() {

double **a = new double*[2];
double *y = new double[2];
double *x = new double[2];
short int is_solved;

for (int i = 0; i < 2; i ++)
a[i] = new double[2];

// Initialize matrix A
a[0][0] = 2;
a[0][1] = 1;

a[1][0] = -1;
a[1][1] = 1;

// Initialize vector y
y[0] = 5;
y[1] = 2;

is_solved = Numerary::linear_systems_of_equations(a, y, x, 2, "gauss");

if (is_solved == 1) {
cout << "System solved!" << endl;
cout << "x = (" << x[0] << ", " << x[1] << ")" << endl;

} else {
cout << "Method is not allowed!";

}

for (int i = 0; i < 2; i++) delete[] a[i];

delete[] a;
delete[] x;
delete[] y;

return 0;
}

1.9 Newton’s Method

1.9.1 Overview

Newton’s method is one of the most popular numerical methods, and is even referred by Burden and Faires as the
most powerful method that is used to solve for the equation 𝑓(𝑥) = 0. This method originates from the Taylor’s series

14 Chapter 1. Contents

Numerary, Release latest

expansion of the function 𝑓(𝑥) about the point 𝑥1:

𝑓(𝑥) = 𝑓 (𝑥1) + (𝑥− 𝑥1) 𝑓 ′ (𝑥1) +
1

2!
(𝑥− 𝑥1)

2
𝑓 ′′ (𝑥1) + · · · (1.16)

where 𝑓 , and its first and second order derivatives, 𝑓 ′ and 𝑓 ′′ are calculated at 𝑥1. If we take the first two terms of the
Taylor’s series expansion we have:

𝑓(𝑥) ≈ 𝑓 (𝑥1) + (𝑥− 𝑥1) 𝑓 ′ (𝑥1) . (1.17)

We then set previous expression to zero (i.e 𝑓(𝑥) = 0) to find the root of the equation which gives us:

𝑓 (𝑥1) + (𝑥− 𝑥1) 𝑓 ′ (𝑥1) = 0. (1.18)

Rearranging the previous expression we obtain the next approximation to the root, giving us:

𝑥 = 𝑥2 = 𝑥1 −
𝑓 (𝑥1)

𝑓 ′ (𝑥1)
(1.19)

Thus generalizing previous expression we obtain Newton’s iterative method:

𝑥𝑖 = 𝑥𝑖−1 −
𝑓 (𝑥𝑖−1)

𝑓 ′ (𝑥𝑖−1)
, 𝑖 ∈ N (1.20)

where 𝑥𝑖 → �̄� (as 𝑖 → ∞), and 𝑥 is the approximation to a root of the function 𝑓(𝑥).

Note: As the iterations begin to have the same repeated values i.e. as 𝑥𝑖 = 𝑥𝑖+1 = �̄� this is an indication that 𝑓(𝑥)
converges to �̄�. Thus 𝑥𝑖 is the root of the function 𝑓(𝑥).

1.9.2 The Method

Step 1:

Let x(0) =
(︁
𝑥
(0)
1 , 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛

)︁
be a given initial vector.

Step 2:

Calculate 𝐽
(︀
x(0)

)︀
and F

(︀
x(0)

)︀
.

Step 3:

We now have to calculate the vector y(0), where

y =

⎡⎢⎢⎢⎣
𝑦1
𝑦2
...
𝑦𝑛

⎤⎥⎥⎥⎦ (1.21)

In order to find y(0), we solve the linear system 𝐽
(︀
x(0)

)︀
y(0) = −F

(︀
x(0)

)︀
, using Gaussian Elimination.

Note: Rearranging the system in Step 3, we get that y(0) = −𝐽
(︀
x(0)

)︀−1
F
(︀
x(0)

)︀
. The significance of this is that,

since y(0) = −𝐽
(︀
x(0)

)︀−1
F
(︀
x(0)

)︀
, we can replace −𝐽

(︀
x(0)

)︀−1
F
(︀
x(0)

)︀
in our iterative formula with y(0). This

result will yield that

x(𝑘) = x(𝑘−1) − 𝐽
(︁
x(𝑘−1)

)︁−1

F
(︁
x(𝑘−1)

)︁
= x(𝑘−1) − y(𝑘−1) (1.22)

1.9. Newton’s Method 15

Numerary, Release latest

Step 4:

Once y(0) is found, we can now proceed to finish the first iteration by solving for x(1). Thus using the result from Step
3, we have that

x(1) = x(0) + y(0) =

⎡⎢⎢⎢⎢⎣
𝑥
(0)
1

𝑥
(0)
2
...

𝑥
(0)
𝑛

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
𝑦
(0)
1

𝑦
(0)
2
...

𝑦
(0)
𝑛

⎤⎥⎥⎥⎥⎦ (1.23)

Step 5:

Once we have calculated x(1), we repeat the process again, until x(𝑘) converges to �̄�. This indicates we have reached
the solution to F(x) = 0, where �̄� is the solution to the system.

Note: When a set of vectors converges, the norm
⃦⃦
x(𝑘) − x(𝑘−1)

⃦⃦
= 0. This means that⃦⃦⃦

x(𝑘) − x(𝑘−1)
⃦⃦⃦

=

√︂(︁
𝑥
(𝑘)
1 − 𝑥

(𝑘−1)
1

)︁2

+ · · · +
(︁
𝑥
(𝑘)
𝑛 − 𝑥

(𝑘−1)
𝑛

)︁2

= 0 (1.24)

1.9.3 Usage

imagine that we want to solve the following nonlinear system of equations:{︂
𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 5
𝑔(𝑥, 𝑦) = 𝑦 − 3𝑥 + 5

(1.25)

then the code will look like this:

// example_newton.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* System to solve */
void system(double *x, double *fv, int n) {

fv[0] = x[0]*x[0] + x[1]*x[1] - 5;
fv[1] = x[1] - 3*x[0] + 5;

}

/* The main function */
int main() {

const int maxiter = 100; // Maximum interations for set method (100 by default)
const double eps = 1.e-7; // eps value for method (1.e-7 by default)
double *x = new double[2], *fv = new double[2];
short int is_solved;

// Initial point
x[0] = 1; x[1] = 2;

is_solved = Numerary::nonlinear_systems_of_equations(system, x, fv, 2, "newton",
→˓eps, maxiter);

(continues on next page)

16 Chapter 1. Contents

Numerary, Release latest

(continued from previous page)

if (is_solved == 1) {
cout << "Solved!" << endl;
cout << "x = " << x[0] << endl;
cout << "y = " << x[1] << endl;

} else {
cout << "Method not allowed!";

}

delete[] x;
delete[] fv;

return 0;
}

1.10 Dormand-Prince Method

1.10.1 Definition

The one step calculation in the Dormand-Prince method is done as the following.

𝑘1 = ℎ𝑓 (𝑡𝑘, 𝑦𝑘) ,

𝑘2 = ℎ𝑓

(︂
𝑡𝑘 +

1

5
ℎ, 𝑦𝑘 +

1

5
𝑘1

)︂
,

𝑘3 = ℎ𝑓

(︂
𝑡𝑘 +

3

10
ℎ, 𝑦𝑘 +

3

40
𝑘1 +

9

40
𝑘2

)︂
,

𝑘4 = ℎ𝑓

(︂
𝑡𝑘 +

4

5
ℎ, 𝑦𝑘 +

44

45
𝑘1 −

56

15
𝑘2 +

32

9
𝑘3

)︂
,

𝑘5 = ℎ𝑓

(︂
𝑡𝑘 +

8

9
ℎ, 𝑦𝑘 +

19372

6561
𝑘1 −

25360

2187
𝑘2 +

64448

6561
𝑘3 −

212

729
𝑘4

)︂
,

𝑘6 = ℎ𝑓

(︂
𝑡𝑘 + ℎ, 𝑦𝑘 +

9017

3168
𝑘1 −

355

33
𝑘2 −

46732

5247
𝑘3 +

49

176
𝑘4 −

5103

18656
𝑘5

)︂
,

𝑘7 = ℎ𝑓

(︂
𝑡𝑘 + ℎ, 𝑦𝑘 +

35

384
𝑘1 +

500

1113
𝑘3 +

125

192
𝑘4 −

2187

6784
𝑘5 +

11

84
𝑘6

)︂
.

(1.26)

Then the next step value 𝑦𝑘+1 is calculated as

𝑦𝑘+1 = 𝑦𝑘 +
35

384
𝑘1 +

500

1113
𝑘3 +

125

192
𝑘4 −

2187

6784
𝑘5 +

11

84
𝑘6. (1.27)

This is a calculation by Runge-Kutta method of order 4. We have to be aware that we do not use 𝑘2, though it is used
to calculate 𝑘3 and so on.

Next, we will calculate the next step value 𝑧𝑘+1 by Runge-Kutta method of order 5 as

𝑧𝑘+1 = 𝑦𝑘 +
5179

57600
𝑘1 +

7571

16695
𝑘3 +

393

640
𝑘4 −

92097

339200
𝑘5 +

187

2100
𝑘6 +

1

40
𝑘7 (1.28)

We calculate the difference of the two next values |𝑧𝑘+1 − 𝑦𝑘+1|.

|𝑧𝑘+1 − 𝑦𝑘+1| =

⃒⃒⃒⃒
71

57600
𝑘1 −

71

16695
𝑘3 +

71

1920
𝑘4 −

17253

339200
𝑘5 +

22

525
𝑘6 −

1

40
𝑘7

⃒⃒⃒⃒
(1.29)

1.10. Dormand-Prince Method 17

Numerary, Release latest

This is considered as the error in 𝑦𝑘+1. We calculate the optimal time interval ℎ𝑜𝑝𝑡 as,

𝑠 =

(︂
𝜀ℎ

2 |𝑧𝑘+1 − 𝑦𝑘+1|

)︂ 1
5

, ℎ𝑜𝑝𝑡 = 𝑠ℎ, (1.30)

where ℎ in the right side is the old time interval. In practical programming, this new ℎ𝑜𝑝𝑡 will be used in the next step
of the calculation, though the author thinks it should be also used in the present calculation when it is very small, half
or smaller for example.

1.10.2 Usage

Imagine that we want to minimize the following differential equation:

𝑦′ = 3
𝑦

𝑥
+ 𝑥3 + 𝑥, 𝑦(1) = 3 (1.31)

Then the code will look like this:

// example_dorpi.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Equation to solve */
double equation(double x, double y) {

return 3.0*y/x + x*x*x + x;
}

/* The main function */
int main() {

double *y = new double[2];
double x0, x, h;
short int is_solved;

// Initial point
x0 = 1; y[0] = 3;

// Point where we want calculate y(x)
x = 2.0;

// Step size
h = 0.01;

is_solved = Numerary::ordinary_differential_equations(equation, y, x0, h, x,
→˓"dorpi_4_5");

if (is_solved == 0) {
cout << "Solved!" << endl;
cout << "y(" << x << ") = " << y[1] << endl;

} else {
cout << "Method not allowed!" << endl;

}

(continues on next page)

18 Chapter 1. Contents

Numerary, Release latest

(continued from previous page)

delete[] y;

return 0;
}

1.11 Linear Regression

1.11.1 Introduction

In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent
variable) and one or more explanatory variables (or independent variables). The case of one explanatory variable is
called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression.
This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted,
rather than a single scalar variable.

1.11.2 The Simple Linear Regression Model

The simplest deterministic mathematical relationship between two variables 𝑥 and 𝑦 is a linear relationship: 𝑦 =
𝛽0 + 𝛽1𝑥.

The objective of this section is to develop an equivalent linear probabilistic model.

If the two (random) variables are probabilistically related, then for a fixed value of x, there is uncertainty in the value
of the second variable.

So we assume 𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜀, where 𝜀 is a random variable.

Two variables are related linearly “on average” if for fixed x the actual value of Y differs from its expected value by a
random amount (i.e. there is random error).

1.11. Linear Regression 19

Numerary, Release latest

1.11.3 A Linear Probabilistic Model

Definition: (The Simple Linear Regression Model)

There are parameters 𝛽0, 𝛽1, and 𝜎2, such that for any fixed value of the independent variable 𝑥, the dependent variable
is a random variable related to 𝑥 through the model equation

The quantity 𝜀 in the model equation is the “error” - a random variable, assumed to be symmetrically distributed with

𝐸(𝜀) = 0 and 𝑉 (𝜀) = 𝜎2
𝜀 = 𝜎2 (1.32)

(no assumption made about the distribution of 𝜀, yet)

• 𝑋: the independent, predictor, or explanatory variable (usually known).

• 𝑌 : the dependent or response variable. For fixed 𝑥, 𝑌 will be random variable.

• 𝜀: the random deviation or random error term. For fixed 𝑥, 𝜀 will be random variable.

• 𝛽0: the average value of 𝑌 when 𝑥 is zero (the intercept of the true regression line)

• 𝛽1: the expected (average) change in 𝑌 associated with a 1-unit increase in the value of 𝑥. (the slope of the true
regression line)

The points (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) resulting from 𝑛 independent observations will then be scattered about the true
regression line:

20 Chapter 1. Contents

Numerary, Release latest

1.11.4 Estimating Model Parameters

The values of 𝛽0, 𝑏𝑒𝑡𝑎1, and 𝑠𝑖𝑔𝑚𝑎 will almost never be known to an investigator.

Instead, sample data consists of n observed pairs (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) from which the model parameters and the true
regression line itself can be estimated.

The data (pairs) are assumed to have been obtained independently of one another.

The “best fit” line is motivated by the principle of least squares, which can be traced back to the German mathemati-
cian Gauss (1777–1855):

A line provides the best fit to the data if the sum of the squared vertical distances (deviations) from the observed points
to that line is as small as it can be.

The sum of squared vertical deviations from the points (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)

𝑓 (𝑏0, 𝑏1) =

𝑛∑︁
𝑖=1

[𝑦𝑖 − (𝑏0 + 𝑏1𝑥𝑖)]
2 (1.33)

The point estimates of 𝛽0 and 𝛽1, denoted by and, are called the least squares estimates – they are those values that
minimize 𝑓(𝑏0, 𝑏1).

The fitted regression line or least squares line is then the line whose equation is 𝑦 = 𝛽0 + 𝛽1𝑥.

The minimizing values of 𝑏0 and 𝑏1 are found by taking partial derivatives of 𝑓(𝑏0, 𝑏1) with respect to both 𝑏0 and 𝑏1,
equating them both to zero [analogously to 𝑓 ′(𝑏) = 0 in univariate calculus], and solving the equations

𝜕𝑓(𝑏0,𝑏1)
𝜕𝑏0

=
∑︀

2 (𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖) (−1) = 0
𝜕𝑓(𝑏0,𝑏1)

𝜕𝑏1
=

∑︀
2 (𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖) (−𝑥𝑖) = 0

(1.34)

The least squares estimate of the slope coefficient 𝛽1 of the true regression line is

𝑏1 = 𝛽1 =

∑︀
(𝑥𝑖 − �̄�) (𝑦𝑖 − 𝑦)∑︀

(𝑥𝑖 − �̄�)
2 =

𝑆𝑥𝑦

𝑆𝑥𝑥
(1.35)

Shortcut formulas for the numerator and denominator of 𝛽1 are

𝑆𝑥𝑦 =
∑︁

𝑥𝑖𝑦𝑖 −
(
∑︀

𝑥𝑖) (
∑︀

𝑦𝑖)

𝑛
and 𝑆𝑥𝑥 =

∑︁
𝑥2
𝑖 −

(
∑︀

𝑥𝑖)
2

𝑛
(1.36)

The least squares estimate of the intercept 𝑏0 of the true regression line is

𝑏0 = 𝛽0 =

∑︀
𝑦𝑖 − 𝛽1

∑︀
𝑥𝑖

𝑛
= 𝑦 − 𝛽1�̄� (1.37)

1.11. Linear Regression 21

Numerary, Release latest

1.11.5 Usage

Imagine that we have following points and we want to build a linear regression model:

X Y
1.0 1.0
2.0 2.0
3.0 1.3
4.0 3.75
5.0 2.25

Then the code will look like this:

// example_linear_regression.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* The main function */
int main() {

const int N = 5; // Number of points
double *X = new double[N], *Y = new double[N], *predicted_kc = new double[2];

X[0] = 1.0; Y[0] = 1.0;
X[1] = 2.0; Y[1] = 2.0;
X[2] = 3.0; Y[2] = 1.3;
X[3] = 4.0; Y[3] = 3.75;
X[4] = 5.0; Y[4] = 2.25;

// Get predicted linear regression line
predicted_kc = Numerary::linear_regression(X, Y, N);

// Equation of regression line
cout << "y = " << predicted_kc[0] << "*x + " << predicted_kc[1] << endl;

// Reallocate memory
delete[] X;
delete[] Y;
delete[] predicted_kc;

return 0;
}

1.12 Lagrange’s Interpolation

1.12.1 Lagrange polynomial

In numerical analysis, Lagrange polynomials are used for polynomial interpolation. For a given set of points (𝑥𝑗 , 𝑦𝑗)
with no two 𝑥𝑗 values equal, the Lagrange polynomial is the polynomial of lowest degree that assumes at each value

22 Chapter 1. Contents

Numerary, Release latest

𝑥𝑗 the corresponding value 𝑥𝑗 , so that the functions coincide at each point.

1.12.2 Definition

Given a set of 𝑘 + 1 data points (𝑥0, 𝑦0), . . . , (𝑥𝑗 , 𝑦𝑗), . . . , (𝑥𝑘, 𝑦𝑘) where no two 𝑥𝑗 are the same, the interpolation
polynomial in the Lagrange form is a linear combination 𝐿(𝑥) :=

∑︀𝑘
𝑗=0 𝑦𝑗ℓ𝑗(𝑥), of Lagrange basis polynomials

ℓ𝑗(𝑥) :=
∏︁

0≤𝑚≤𝑘
�̸�=𝑗

𝑥− 𝑥𝑚

𝑥𝑗 − 𝑥𝑚
=

(𝑥− 𝑥0)

(𝑥𝑗 − 𝑥0)
· · · (𝑥− 𝑥𝑗−1)

(𝑥𝑗 − 𝑥𝑗−1)

(𝑥− 𝑥𝑗+1)

(𝑥𝑗 − 𝑥𝑗+1)
· · · (𝑥− 𝑥𝑘)

(𝑥𝑗 − 𝑥𝑘)
(1.38)

where 0 ≤ 𝑗 ≤ 𝑘. Note how, given the initial assumption that no two 𝑥𝑗 are the same, 𝑥𝑗 −𝑥𝑚 ̸= 0, so this expression
is always well-defined. The reason pairs 𝑥𝑖 = 𝑥𝑗 with 𝑦𝑖 ̸= 𝑦𝑗 are not allowed is that no interpolation function 𝐿
such that 𝑦𝑖 = 𝐿(𝑥𝑖) would exist; a function can only get one value for each argumetn 𝑥𝑖. On the other hand, if also
𝑦𝑖 = 𝑦𝑗 , then those two points would actually be one single point.

For all 𝑖 ̸= 𝑗, ℓ(𝑥) includes the term (𝑥− 𝑥𝑖) in the numerator, so the whole pruduct will be zero at 𝑥 = 𝑥𝑖:

ℓ𝑗 ̸=𝑖 (𝑥𝑖) =
∏︁
𝑚 ̸=𝑗

𝑥𝑖 − 𝑥𝑚

𝑥𝑗 − 𝑥𝑚
=

(𝑥𝑖 − 𝑥0)

(𝑥𝑗 − 𝑥0)
· · · (𝑥𝑖 − 𝑥𝑖)

(𝑥𝑗 − 𝑥𝑖)
· · · (𝑥𝑖 − 𝑥𝑘)

(𝑥𝑗 − 𝑥𝑘)
= 0 (1.39)

On the other hand,
ℓ𝑖 (𝑥𝑖) :=

∏︁
�̸�=𝑖

𝑥𝑖 − 𝑥𝑚

𝑥𝑖 − 𝑥𝑚
= 1 (1.40)

In other words, all basis polynomials are zero at 𝑥 = 𝑥𝑖, except ℓ𝑖(𝑥), for which it holds that ℓ𝑖(𝑥𝑖) = 1, because it
lacks the (𝑥− 𝑥𝑖) term.

It follows that ℓ𝑖(𝑥𝑖) = 𝑦𝑖, so at each point 𝑥𝑖, 𝐿(𝑥𝑖) = 𝑦𝑖 + 0 + 0 + · · · + 0 = 𝑦𝑖, showing that 𝐿 interpolates the
function exactly.

1.12.3 Runge’s example

The function 𝑓(𝑥) = 1
1+𝑥2 cannot be interpolated accurately on [5, 5] using a tenth-degree polynomial (dashed curve)

with equally-spaced interpolation points. This example that illustrates the difficulty that one can generally expect with
high-degree polynomial interpolation with equally-spaced points is known as Runge’s example.

1.12. Lagrange’s Interpolation 23

Numerary, Release latest

1.12.4 Usage

Imagine that we have following points and we want to build a Lagrange polynomial with this points:

X Y
2.0 10.0
3.0 15.0
5.0 25.0
8.0 40.0
12.0 60.0

Then the code will look like this:

// example_lagrange_polynomial.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* The main function */
int main() {

const int N = 5;
double *X = new double[N], *Y = new double[N];
double y, x;

// Points to interpolate
X[0] = 2.0; Y[0] = 10.0;
X[1] = 3.0; Y[1] = 15.0;
X[2] = 5.0; Y[2] = 25.0;

(continues on next page)

24 Chapter 1. Contents

Numerary, Release latest

(continued from previous page)

X[3] = 8.0; Y[3] = 40.0;
X[4] = 12.0; Y[4] = 60.0;

// Point where we want to get value of Lagrange Polynomial
x = 7.0;

y = Numerary::lagrange_polynomial(X, Y, x, N);

cout << "y(" << x << ") = " << y << endl;

delete[] X;
delete[] Y;

return 0;
}

1.13 Numerical differentiation. Calculation of the first derivative.

1.13.1 Definition

By definition, the first derivative of a smooth function 𝑓(𝑥) at a point x is calculated as

𝑓 ′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
. (1.41)

When calculating the first derivative of the function 𝑓(𝑥) on a computer, we replace the infinitesimal ℎ → ∞ with a
small but finite value ℎ:

𝑓 ′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
+ O(ℎ), (1.42)

where O(ℎ) is the derivative calculation error, which naturally depends on ℎ. Previous formula is called a differ-
ence scheme for calculating the first derivative (more precisely, a right difference scheme or just a right difference).
Similarly, maybe the left-hand difference scheme is written.

How to determine O(ℎ)? Expand the function 𝑓(𝑥) in a Taylor series at the point 𝑥 + ℎ:

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓 ′(𝑥) +
ℎ2

2
𝑓 ′′(𝑥) +

ℎ3

6
𝑓 ′′′(𝑥) + . . . , (1.43)

whence it follows that in the first order of the expansion

O(ℎ) = −ℎ

2
𝑓 ′′(𝑥) + (1.44)

By choosing a very small ℎ, the round-off errors in computing on a computer can be comparable to or greater than ℎ.
Therefore, we are interested in an algorithm that gives lower error value for the same value of ℎ.

Such an improved algorithm can be easily obtained by expanding the function 𝑓(𝑥) into a Taylor series at the points
𝑥 + ℎ and 𝑥− ℎ, then subtracting one result from the other, which gives

𝑓 ′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥− ℎ)

2ℎ
+ O

(︀
ℎ2

)︀
, (1.45)

where the error in calculating the first derivative

O
(︀
ℎ2

)︀
= −ℎ2

6
𝑓 ′′′(𝑥) +

1.13. Numerical differentiation. Calculation of the first derivative. 25

Numerary, Release latest

This is the central difference scheme (central difference).

In principle, it is possible to follow the path of improving the accuracy of the method for calculating the first derivative
and further. For example, considering the expansion of the function 𝑓(𝑥) in a Taylor series at the points 𝑥+ℎ, 𝑥+ 2ℎ,
𝑥− ℎ, and 𝑥− 2ℎ, one can obtain a four-point scheme etc.

1.13.2 Usage

Imagine that we want to find the derivative of the following function:

𝑓(𝑥) = sin (𝑥) (1.46)

Then the code will look like this:

// example_first_order_derivative_h.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* Functiion to derive */
double f(double x) {

return sin(x);
}

/* The main function */
int main() {

const short int order = 1;
double x, dy_dx;

// Point where we want get value of derivative function
x = M_PI;

dy_dx = Numerary::differentiate(f, order, x);

cout << "dy/dx (" << x << ") = " << dy_dx << endl;

return 0;
}

1.14 Incomplete Gamma Function

1.14.1 Definition

𝛾(𝑠, 𝑥) =

∫︁ 𝑥

0

𝑡𝑠−1e−𝑡d𝑡 (1.47)

1.14.2 Usage

Imagine that we want to calculate the value of:
𝛾(2, 1) (1.48)

26 Chapter 1. Contents

Numerary, Release latest

Then the code will look like this:

// example_incomplete_gamma_function.cpp

#include <iostream>
#include "../src/numerary.hpp" // Numerary library

using namespace std;
using namespace numerary;

/* The main function */
int main() {

double value;

value = Numerary::incgamma(2, 1);

cout << "IncGamma(2, 1) = " << value << endl;

return 0;
}

1.14. Incomplete Gamma Function 27

	Contents
	Bisection Method
	Secant Method
	Integral Approximation - Simpson’s Rule
	Bisection Method
	Golden Ratio Method
	Bisection Method
	Golden Ratio Method
	Gauss Elimination Method
	Newton’s Method
	Dormand-Prince Method
	Linear Regression
	Lagrange’s Interpolation
	Numerical differentiation. Calculation of the first derivative.
	Incomplete Gamma Function

